Fuzziness as a recognition problem: using decision tree learning algorithms for inducing fuzzy membership functions

نویسنده

  • O. Nykänen
چکیده

In this article we establish a new method for inducing fuzzy set membership degrees based on empirical training data. The approach is founded on the notion of Redundant Decision Trees (RDT), a generalisation of regular crisp Decision Trees (DT). RDTs suffice in capturing the attribute tests required for recognising crisp concepts, from which the related fuzzy concepts may be unambiguously derived. Potential applications of this method include categorisation and the semiautomatic construction and the statistical evaluation of fuzzy concepts. In addition, since the definition of the membership degrees is effectively based on a robust DT machine learning algorithm, the induced fuzzy membership functions generalise. Thus, with certain assumptions, they output sensible membership degrees of previously unseen objects. In addition to introducing and analysing the basic definitions and algorithms, we briefly evaluate their applicability with examples and present some remarks concerning the scope of the approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exponential membership function and duality gaps for I-fuzzy linear programming problems

Fuzziness is ever presented in real life decision making problems. In this paper, we adapt the pessimistic approach tostudy a pair of linear primal-dual problem under intuitionistic fuzzy (I-fuzzy) environment and prove certain dualityresults. We generate the duality results using exponential membership and non-membership functions to represent thedecision maker’s satisfaction and dissatisfacti...

متن کامل

A TAYLOR SERIES APPROACH FOR SOLVING LINEAR FRACTIONAL DECENTRALIZED BI-LEVEL MULTI-OBJECTIVE DECISION-MAKING UNDER FUZZINESS

This paper presents a Taylor series approach for solving linear fractional de-centralized bi-level multi-objective decision-making (LFDBL-MODM) problems with asingle decision maker at the upper level and multiple decision makers at the lower level.In the proposed approach, the membership functions associated with each objective(s) ofthe level(s) of LFDBL-MODM are transformed by using a Taylor s...

متن کامل

Mathematical solution of multilevel fractional programming problem with fuzzy goal programming approach

In this paper, we show a procedure for solving multilevel fractional programming problems in a large hierarchical decentralized organization using fuzzy goal programming approach. In the proposed method, the tolerance membership functions for the fuzzily described numerator and denominator part of the objective functions of all levels as well as the control vectors of the higher level decision ...

متن کامل

Optimizing Membership Functions using Learning Automata for Fuzzy Association Rule Mining

The Transactions in web data often consist of quantitative data, suggesting that fuzzy set theory can be used to represent such data. The time spent by users on each web page is one type of web data, was regarded as a trapezoidal membership function (TMF) and can be used to evaluate user browsing behavior. The quality of mining fuzzy association rules depends on membership functions and since t...

متن کامل

Fuzziness and Performance: An Empirical Study with Linguistic Decision Trees

Generally, there are two main streams of theories for studying uncertainties. One is probability theory and the other is fuzzy set theory. One of the basic ideas of fuzzy set theory is how to define and interpret membership functions. In this paper, we will study tree-structured data mining model based on a new interpretation of fuzzy theory. In this new theory, fuzzy labels will be used for mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004